The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Heart Failure Prediction Models using Big Data Techniques

Author 1: Heba F. Rammal
Author 2: Ahmed Z. Emam

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.090547

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 5, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Big Data technologies have a great potential in transforming healthcare, as they have revolutionized other industries. In addition to reducing the cost, they could save millions of lives and improve patient outcomes. Heart Failure (HF) is the leading death cause disease, both nationally and internally. The Social and individual burden of this disease can be reduced by its early detection. However, the signs and symptoms of HF in the early stages are not clear, so it is relatively difficult to prevent or predict it. The main objective of this research is to propose a model to predict patients with HF using a multi-structure dataset integrated from various resources. The underpinning of our proposed model relies on studying the current analytical techniques that support heart failure prediction, and then build an integrated model based on Big Data technologies using WEKA analytics tool. To achieve this, we extracted different important factors of heart failure from King Saud Medical City (KSUMC) system, Saudi Arabia, which are available in structured, semi-structured and unstructured format. Unfortunately, a lot of information is buried in unstructured data format. We applied some pre-processing techniques to enhance the parameters and integrate different data sources in Hadoop Distributed File System (HDFS) using distributed-WEKA-spark package. Then, we applied data-mining algorithms to discover patterns in the dataset to predict heart risks and causes. Finally, the analyzed report is stored and distributed to get the insight needed from the prediction. Our proposed model achieved an accuracy and Area under the Curve (AUC) of 93.75% and 94.3%, respectively.

Keywords: Big data; hadoop; healthcare; heart failure; prediction model

Heba F. Rammal and Ahmed Z. Emam, “Heart Failure Prediction Models using Big Data Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 9(5), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090547

@article{Rammal2018,
title = {Heart Failure Prediction Models using Big Data Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090547},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090547},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {5},
author = {Heba F. Rammal and Ahmed Z. Emam}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org