The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

An Efficient Link Prediction Technique in Social Networks based on Node Neighborhoods

Author 1: Gypsy Nandi
Author 2: Anjan Das

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2018.090637

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 6, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The unparalleled accomplishment of social networking sites, such as Facebook, LinkedIn and Twitter has modernized and transformed the way people communicate to each other. Nowadays, a huge amount of information is being shared by online users through these social networking sites. Various online friendship sites such as Facebook and Orkut, allow online friends to share their thoughts or opinions, comment on others’ timeline or photos, and most importantly, meet new online friends who were known to them before. However, the question remains as to how to quickly propagate one’s online network by including more and more new friends. For this, one of the easy methods used is list of ‘Suggested Friends’ provided by these online social networking sites. For suggestion of friends, prediction of links for each online user is needed to be made based on studying the structural properties of the network. Link prediction is one of the key research directions in social network analysis which has attracted much attention in recent years. This paper discusses about a novel efficient link prediction technique LinkGyp and many other commonly used existing prediction techniques for suggestion of friends to online users of a social network and also carries out experimental evaluations to make a comparative analysis among each technique. Our results on three real social network datasets show that the novel LinkGyp link prediction technique yields more accurate results than several existing link prediction techniques.

Keywords: Link prediction; online social networks; common neighbors; Jaccard’s coefficient; Adamic/Adar; preferential attachment; FriendLink

Gypsy Nandi and Anjan Das, “An Efficient Link Prediction Technique in Social Networks based on Node Neighborhoods” International Journal of Advanced Computer Science and Applications(IJACSA), 9(6), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090637

@article{Nandi2018,
title = {An Efficient Link Prediction Technique in Social Networks based on Node Neighborhoods},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090637},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090637},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {6},
author = {Gypsy Nandi and Anjan Das}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org