The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090660
PDF

Performance Analysis of Machine Learning Algorithms for Missing Value Imputation

Author 1: Nadzurah Zainal Abidin
Author 2: Amelia Ritahani Ismail
Author 3: Nurul A. Emran

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 6, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Data mining requires a pre-processing task in which the data are prepared, cleaned, integrated, transformed, reduced and discretized for ensuring the quality. Missing values is a universal problem in many research domains that is commonly encountered in the data cleaning process. Missing values usually occur when a value of stored data absent for a variable of an observation. Missing values problem imposes undesirable effect on analysis results, especially when it leads to biased parameter estimates. Data imputation is a common way to deal with missing values where the missing value’s substitutes are discovered through statistical or machine learning techniques. Nevertheless, examining the strengths (and limitations) of these techniques is important to aid understanding its characteristics. In this paper, the performance of three machine learning classifiers (K-Nearest Neighbors (KNN), Decision Tree, and Bayesian Networks) are compared in terms of data imputation accuracy. The results shows that among the three classifiers, Bayesian has the most promising performance.

Keywords: Data Mining; Imputation; Machine Learning; KNearest Neighbors; Decision Tree; Bayesian Networks

Nadzurah Zainal Abidin, Amelia Ritahani Ismail and Nurul A. Emran, “Performance Analysis of Machine Learning Algorithms for Missing Value Imputation” International Journal of Advanced Computer Science and Applications(IJACSA), 9(6), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090660

@article{Abidin2018,
title = {Performance Analysis of Machine Learning Algorithms for Missing Value Imputation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090660},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090660},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {6},
author = {Nadzurah Zainal Abidin and Amelia Ritahani Ismail and Nurul A. Emran}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org