The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090723
PDF

An Improved Bat Algorithm based on Novel Initialization Technique for Global Optimization Problem

Author 1: Waqas Haider Bangyal
Author 2: Jamil Ahmad
Author 3: Hafiz Tayyab Rauf
Author 4: Sobia Pervaiz

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 7, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Bat algorithm (BA) is a nature-inspired metaheuristic algorithm which is widely used to solve the real world global optimization problem. BA is a population-based intelligent stochastic search technique that emerged from the echolocation features of bats and created from the mimics of bats foraging behavior. One of the major issue faced by the BA is frequently captured in local optima while handling the complex real-world problems. In this study, a new variant of BA named as improved bat algorithm (I-BAT) is proposed. Improved bat algorithm modifies the standard BA by enhancing its exploitation capabilities, and secondly for initialization of swarm, a quasi-random sequence Torus has been applied to overcome the issue of convergence and diversity. Population initialization is a vital factor in BA, which considerably influences the diversity and convergence of swarm. In order to improve the diversity and convergence, quasi-random sequences are more useful to initialize the population rather than the random distribution. The proposed strategy is applied to standard benchmark functions that are extensively used in the literature. The experimental results illustrate the superiority of the proposed technique. The simulation results verify the efficiency of proposed technique for swarm over the benchmark algorithm that is implemented for the function optimization.

Keywords: Bat algorithm; local optima; exploration and exploitation; quasi-random sequence

Waqas Haider Bangyal, Jamil Ahmad, Hafiz Tayyab Rauf and Sobia Pervaiz, “An Improved Bat Algorithm based on Novel Initialization Technique for Global Optimization Problem” International Journal of Advanced Computer Science and Applications(IJACSA), 9(7), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090723

@article{Bangyal2018,
title = {An Improved Bat Algorithm based on Novel Initialization Technique for Global Optimization Problem},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090723},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090723},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {7},
author = {Waqas Haider Bangyal and Jamil Ahmad and Hafiz Tayyab Rauf and Sobia Pervaiz}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org