The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090728
PDF

Detection of Sentiment Polarity of Unstructured Multi-Language Text from Social Media

Author 1: Saad Ahmed
Author 2: Saman Hina
Author 3: Raheela Asif

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 7, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In recent years, Twitter has caught the attention of many researchers because of the fact that it is growing very rapidly in terms of number of users and also all the data present as tweets on twitter is public in nature while other social media networks such as Facebook, data is not completely public as users can restrict their post to only users present in their friend list. In this research study, aspect based sentiment analysis (ABSA) was done on the data acquired from social media related to the major cellular network companies of Pakistan (Telenor Pakistan, Mobilink Jazz, Zong, Warid and Ufone). For this research, we have specifically selected all tweets which are not only in English and Roman Urdu but also mixture of above two languages. We have employed natural language processing (NLP) techniques for pre-processing the dataset and machine learning (ML) techniques to detect the sentiments present in the data. The results are interesting and informative specially for policy makers of cellular companies. These companies can utilize this information to increase the performance of their services. In comparison with the state of the art algorithms, the performance of bagging algorithm with this framework on the acquired dataset has produced F Score of 92.25, which is very encouraging outcome of this research work.

Keywords: Social media; sentiment analysis; data mining; cellular networks

Saad Ahmed, Saman Hina and Raheela Asif, “Detection of Sentiment Polarity of Unstructured Multi-Language Text from Social Media” International Journal of Advanced Computer Science and Applications(IJACSA), 9(7), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090728

@article{Ahmed2018,
title = {Detection of Sentiment Polarity of Unstructured Multi-Language Text from Social Media},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090728},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090728},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {7},
author = {Saad Ahmed and Saman Hina and Raheela Asif}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org