The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090704
PDF

Load Forecasting using Autoregressive Integrated Moving Average and Artificial Neural Network

Author 1: Lemuel Clark P. Velasco
Author 2: Daisy Lou L. Polestico
Author 3: Gary Paolo O. Macasieb
Author 4: Michael Bryan V. Reyes
Author 5: Felicisimo B. Vasquez Jr

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 7, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electric load forecasting is a challenging research problem due to the complicated nature of its dataset involving both linear and nonlinear properties. Various literatures attempted to develop forecasting models that utilized statistical in combination with machine learning approaches deal with the dataset’s linear and nonlinear components to obtain close to accurate predictions. In this paper, autoregressive integrated moving average (ARIMA) and artificial neural networks (ANN) were implemented as forecasting models for a power utility’s dataset in order to predict day-ahead electric load. Electric load data preparation, models implementation and forecasting evaluation was conducted to assess if the prediction of the models met the acceptable error tolerance for day-ahead electric load forecasting. A Java-based system made use of R Statistical Software implemented ARIMA(8,1,2) while Encog Library was used to implement the ANN model composing of Resilient Propagation as the training algorithm and Hyperbolic Tangent as the activation function. The ANN+ARIMA hybrid model was found out to deliver a Mean Absolute Percentage Error (MAPE) of 4.09% which proves to be a viable technique in electric load forecasting while showing better forecasting results than solely using ARIMA and ANN. Through this research, both statistical and machine learning approaches were implemented as a forecasting model combination to solve the linear and non-linear properties of electric load data.

Keywords: Electric load forecasting; autoregressive integrated moving average; artificial neural network

Lemuel Clark P. Velasco, Daisy Lou L. Polestico, Gary Paolo O. Macasieb, Michael Bryan V. Reyes and Felicisimo B. Vasquez Jr, “Load Forecasting using Autoregressive Integrated Moving Average and Artificial Neural Network” International Journal of Advanced Computer Science and Applications(IJACSA), 9(7), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090704

@article{Velasco2018,
title = {Load Forecasting using Autoregressive Integrated Moving Average and Artificial Neural Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090704},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090704},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {7},
author = {Lemuel Clark P. Velasco and Daisy Lou L. Polestico and Gary Paolo O. Macasieb and Michael Bryan V. Reyes and Felicisimo B. Vasquez Jr}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org