The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090931
PDF

Self-organized Population Segmentation for Geosocial Network Neighborhood

Author 1: Low Shen Loong
Author 2: Syarulnaziah Anawar
Author 3: Zakiah Ayop
Author 4: Mohd Rizuan Baharon
Author 5: Erman Hamid

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 9, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Geosocial network neighborhood application allows user to share information and communicate with other people within a virtual neighborhood or community. A large and crowded neighbourhood will degrade social quality within the community. Therefore, optimal population segmentation is an essential part in a geosocial network neighborhood, to specify access rights and privileges to resources, and increase social connectivity. In this paper, we propose an extension of the density-based clustering method to allow self-organized segmentation for neighbourhood boundaries in a geosocial network. The objective of this paper is two-fold: First, to improve the distance calculation in population segmentation in a geosocial network neighbourhood. Second, to implement self-organized population segmentation algorithms using threshold value and Dunbar number. The effectiveness of the proposed algorithms is evaluated via experimental scenarios using GPS data. The proposed algorithms show improvement in segmenting large group size of cluster into smaller group size of cluster to maintain the stability of social relationship in the neighbourhood.

Keywords: Segmentation; geosocial network; virtual neighbourhood; density-based clustering; dunbar’s number

Low Shen Loong, Syarulnaziah Anawar, Zakiah Ayop, Mohd Rizuan Baharon and Erman Hamid, “Self-organized Population Segmentation for Geosocial Network Neighborhood” International Journal of Advanced Computer Science and Applications(IJACSA), 9(9), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090931

@article{Loong2018,
title = {Self-organized Population Segmentation for Geosocial Network Neighborhood},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090931},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090931},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {9},
author = {Low Shen Loong and Syarulnaziah Anawar and Zakiah Ayop and Mohd Rizuan Baharon and Erman Hamid}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org