The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2018.090977
PDF

Deep Learning based Object Distance Measurement Method for Binocular Stereo Vision Blind Area

Author 1: Jiaxu Zhang
Author 2: Shaolin Hu
Author 3: Haoqiang Shi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 9 Issue 9, 2018.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Visual field occlusion is one of the causes of urban traffic accidents in the process of reversing. In order to meet the requirements of vehicle safety and intelligence, a method of target distance measurement based on deep learning and binocular vision is proposed. The method first establishes binocular stereo vision model and calibrates intrinsic extrinsic and extrinsic parameters, uses Faster R-CNN algorithm to identify and locate obstacle objects in the image, then substitutes the obtained matching points into a calibrated binocular stereo model for spatial coordinates of the target object. Finally, the obstacle distance is calculated by the formula. In different positions, take pictures of obstacles from different angles to conduct physical tests. Experimental results show that this method can effectively achieve obstacle object identification and positioning, and improve the adverse effect of visual field blindness on driving safety.

Keywords: deep learning; computer vision; binocular stereo vision; intelligent transportation

Jiaxu Zhang, Shaolin Hu and Haoqiang Shi, “Deep Learning based Object Distance Measurement Method for Binocular Stereo Vision Blind Area” International Journal of Advanced Computer Science and Applications(IJACSA), 9(9), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090977

@article{Zhang2018,
title = {Deep Learning based Object Distance Measurement Method for Binocular Stereo Vision Blind Area},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2018.090977},
url = {http://dx.doi.org/10.14569/IJACSA.2018.090977},
year = {2018},
publisher = {The Science and Information Organization},
volume = {9},
number = {9},
author = {Jiaxu Zhang and Shaolin Hu and Haoqiang Shi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org