The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140413
PDF

Plant Disease Classification and Adversarial Attack based CL-CondenseNetV2 and WT-MI-FGSM

Author 1: Yong Li
Author 2: Yufang Lu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 4, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In recent years, deep learning has been increasingly used to the detection of pests and diseases. Unfortunately, deep neural networks are particularly vulnerable when attacked by adversarial examples. Hence it is vital to explore the creation of intensely aggressive adversarial examples to increase neural network robustness. This paper proposes a wavelet transform and histogram equalization-based adversarial attack algorithm: WT-MI-FGSM. In order to verify the performance of the WT-MI-FGSM, we propose a plant pests and diseases identification method based on the coordinate attention mechanism and CondenseNetV2: CL-CondenseNetV2. The accuracy of CL- CondenseNetV2 on the PlantVillage dataset is 99.45%, which indicates that the improved CondenseNetV2 model has a more significant classification performance. In adversarial sample experiments using WT-MI-FGSM and CL-CondenseNetV2, experimental results show that when CL-CondenseNetV2 is attacked by the adversarial algorithm WT-MI-FGSM, the error rate reaches 89.8%, with a higher attack success rate than existing adversarial attack algorithms. In addition, the accuracy of CL-CondenseNetV2 is improved to 99.71% by adding the adversarial samples generated by WT-MI-FGSM to the training set and performing adversarial training. The experiments demonstrate that the adversarial examples caused by WT-MI-FGSM can improve the model's performance.

Keywords: Adversarial examples; FGSM; plants diseases and pests; attention mechanism; CondenseNetV2

Yong Li and Yufang Lu, “Plant Disease Classification and Adversarial Attack based CL-CondenseNetV2 and WT-MI-FGSM” International Journal of Advanced Computer Science and Applications(IJACSA), 14(4), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140413

@article{Li2023,
title = {Plant Disease Classification and Adversarial Attack based CL-CondenseNetV2 and WT-MI-FGSM},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140413},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140413},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {4},
author = {Yong Li and Yufang Lu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org