The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100161
PDF

Auto-Scaling Approach for Cloud based Mobile Learning Applications

Author 1: Amani Nasser Almutlaq
Author 2: Dr. Yassine Daadaa

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 1, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the last decade, mobile learning applications have attracted a significant amount of attention. Huge investments have been made to develop educational applications that can be implemented on mobile devices. However, mobile learning applications have some limitations, such as storage space and battery life. Cloud computing provides a new idea to solve some limitations of mobile learning applications. However, there are other limitations, like scalability, that must be solved before mobile cloud learning can become completely operational. There are two main problems with scalability. The first occurs when the application server’s performance declines due to an increase in the number of requests, which affects usability. The second is that a decrease in the number of requests makes most application servers idle and therefore wastes money. These two problems can be avoided or minimized by provisioning auto-scaling techniques that permit the acquisition and release of resources dynamically to accommodate demand. In this paper, we propose an intelligent neuro-fuzzy reinforcement learning approach to solve the scalability problem in mobile cloud learning applications, and evaluate the proposed approach against some of the existing approaches via MATLAB. The large state space and long training time required to find the optimal policy are the main problems of reinforcement learning. We use fuzzy Q-learning to solve the large state space problem by grouping similar variables in the same state; there is then no need to use large look-up tables. The use of parallel learning agents reduces the training time needed to determine optimal policies. The experimental results prove that the proposed approach is able to increase learning speed and reduce the training time needed to determine optimal policies.

Keywords: Auto-scaling; reinforcement learning; fuzzy Q-learning

Amani Nasser Almutlaq and Dr. Yassine Daadaa, “Auto-Scaling Approach for Cloud based Mobile Learning Applications” International Journal of Advanced Computer Science and Applications(IJACSA), 10(1), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100161

@article{Almutlaq2019,
title = {Auto-Scaling Approach for Cloud based Mobile Learning Applications},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100161},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100161},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {1},
author = {Amani Nasser Almutlaq and Dr. Yassine Daadaa}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org