The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100639
PDF

New Method of Faults Diagnostic based on Neuro-Dynamic Sliding Mode for Flat Nonlinear Systems

Author 1: O. Dhaou
Author 2: L.Sidhom
Author 3: A.Abdelkrim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 6, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper addresses the problem of simultaneous actuator, process and sensor Fault Detection and Isolation (FDI) for nonlinear system having flatness properties with the presence of disturbances and which are operating in closed-loop. In particular, the nonlinear system is corrupted with additive actuator, process or sensor faults with simultaneous occurrence. In this case, the residual signals might be sensitive to all of these faults that can appear in the system. The proposed FDI method is based on both input and parameter estimators that are designed in parallel. With the flatness property of such system, the design of these two estimators requires information on the measured outputs and their successive derivatives. To estimate these last one, a new scheme of the 2nd-order dynamic sliding mode differentiator is proposed. Residuals are next defined as the difference between the estimated and expected behavior. In order to isolate the faults, dynamic neural networks technique is employed. Besides, comparative study between this new differentiator and the well-known 2nd-order Levant’s differentiator is provided to show the pros and cons of the proposed FDI method. This latter is validated by the simulation results and is carried out on a three tank system.

Keywords: Flat system; fault detection and isolation; inputs/parameters estimator; higher order sliding mode differentiator; dynamic neural network

O. Dhaou, L.Sidhom and A.Abdelkrim, “New Method of Faults Diagnostic based on Neuro-Dynamic Sliding Mode for Flat Nonlinear Systems” International Journal of Advanced Computer Science and Applications(IJACSA), 10(6), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100639

@article{Dhaou2019,
title = {New Method of Faults Diagnostic based on Neuro-Dynamic Sliding Mode for Flat Nonlinear Systems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100639},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100639},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {6},
author = {O. Dhaou and L.Sidhom and A.Abdelkrim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org