The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100836
PDF

Machine Learning Approaches for Predicting the Severity Level of Software Bug Reports in Closed Source Projects

Author 1: Aladdin Baarah
Author 2: Ahmad Aloqaily
Author 3: Zaher Salah
Author 4: Mannam Zamzeer
Author 5: Mohammad Sallam

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 8, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In Software Development Life Cycle, fixing defect bugs is one of the essential activities of the software maintenance phase. Bug severity indicates how major or minor the bug impacts on the execution of the system and how rapidly the developer should fix it. Triaging a vast amount of new bugs submitted to the software bug repositories is a cumbersome and time-consuming process. Manual triage might lead to a mistake in assigning the appropriate severity level for each bug. As a consequence, a delay for fixing severe software bugs will take place. However, the whole process of assigning the severity level for bug reports should be automated. In this paper, we aim to build prediction models that will be utilized to determine the class of the severity (severe or non-severe) of the reported bug. To validate our approach, we have constructed a dataset from historical bug reports stored in JIRA bug tracking system. These bug reports are related to different closed-source projects developed by INTIX Company located in Amman, Jordan. We compare eight popular machine learning algorithms, namely Naive Bayes, Naive Bayes Multinomial, Support Vector Machine, Decision Tree (J48), Random Forest, Logistic Model Trees, Decision Rules (JRip) and K-Nearest Neighbor in terms of accuracy, F-measure and Area Under the Curve (AUC). According to the experimental results, a Decision Tree algorithm called Logistic Model Trees achieved better performance compared to other machine learning algorithms in terms of Accuracy, AUC and F-measure with values of 86.31, 0.90 and 0.91, respectively.

Keywords: Software engineering; software maintenance; bug tracking system; bug severity; data mining; machine learning; severity prediction; closed-source projects

Aladdin Baarah, Ahmad Aloqaily, Zaher Salah, Mannam Zamzeer and Mohammad Sallam, “Machine Learning Approaches for Predicting the Severity Level of Software Bug Reports in Closed Source Projects” International Journal of Advanced Computer Science and Applications(IJACSA), 10(8), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100836

@article{Baarah2019,
title = {Machine Learning Approaches for Predicting the Severity Level of Software Bug Reports in Closed Source Projects},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100836},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100836},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {8},
author = {Aladdin Baarah and Ahmad Aloqaily and Zaher Salah and Mannam Zamzeer and Mohammad Sallam}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org