The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100841
PDF

Convolutional Neural Network Architecture for Plant Seedling Classification

Author 1: Heba A Elnemr

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 8, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Weed control is a challenging problem that may face crops productivity. Weeds are perceived as an important problem because they conduce to reduce crop yields due to the expanding competition for nutrients, water, and sunlight besides they serve as hosts for diseases and pests. Thus, it is crucial to identify weeds in early growth in order to avoid their side effects on crops growth. Previous conventional machine learning technologies exploited for discriminating crops and weeding species faced challenges of effectiveness and reliability of weed detection at preliminary stages of growth. This work proposes the application of deep learning technique for plant seedling classification. A new Convolutional Neural Networks (CNN) architecture is designed to classify plant seedlings at their early growth stages. The presented technique is appraised using plant seedlings dataset. Average accuracy, precision, recall, and F1-score are utilized as evaluation metrics. The results reveal the capability of the proposed technique in discriminating among 12 species (3 crops and 9 weeds). The system achieved 94.38% average classification accuracy. The proposed system is compared with existing plant seedling systems. The results demonstrate that the proposed method outperforms the existing methods.

Keywords: Deep learning; convolutional neural network; plant seedling classification; weed control

Heba A Elnemr, “Convolutional Neural Network Architecture for Plant Seedling Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 10(8), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100841

@article{Elnemr2019,
title = {Convolutional Neural Network Architecture for Plant Seedling Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100841},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100841},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {8},
author = {Heba A Elnemr}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org