The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2019.0100808
PDF

Mortality Prediction based on Imbalanced New Born and Perinatal Period Data

Author 1: Wafa M AlShwaish
Author 2: Maali Ibr. Alabdulhafith

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 10 Issue 8, 2019.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This study was carried out by the New York State Department of Health, between 2012 and 2016. This experiment relates to six supervised machine learning methods: Support Vector Machine (SVM), Logistic Regression (LR), Gradient Boosting (GB), Random Forest (RF), Deep Learning (DL) and the Ensemble Model, all of which are used in the prediction of infant mortality. This experiment applied ensemble model that concentrated on assigning different weights to different models per output class in order to obtain a better predictive performance for infant mortality. Efforts were made to measure the performance and compare the classifier accuracy of each model. Several criteria, including the area under ROC curve, were considered when comparing the ensemble model (GB, RF and DL) with the other five models (SVM, LR, DL, GB and RF). In terms of these different criteria, the ensemble model outperformed the others in predicting survival rates among infant patients given a balanced data set (the areas under the ROC curve for minor, moderate, major and extreme were 98%, 95%, 92% and 97% respectively, giving a total accuracy of 80.65%). For the imbalanced dataset, (the areas under the ROC curve for minor, moderate, major and extreme were 98%, 98%, 99% and 99% respectively, giving total accuracy increased to 97.44%). The results of the experiments used in this dissertation showed that using the ensemble model provided a better level of prediction for infant mortality than the other five models, based on the relative prediction accuracy for each model for each output class. Therefore, the ensemble model provides and extremely promises classifier in terms of predicting infant mortality.

Keywords: Component; machine learning; support vector machine; logistic regression; gradient boosting; random forest; deep learning; ensemble model

Wafa M AlShwaish and Maali Ibr. Alabdulhafith, “Mortality Prediction based on Imbalanced New Born and Perinatal Period Data” International Journal of Advanced Computer Science and Applications(IJACSA), 10(8), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100808

@article{AlShwaish2019,
title = {Mortality Prediction based on Imbalanced New Born and Perinatal Period Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2019.0100808},
url = {http://dx.doi.org/10.14569/IJACSA.2019.0100808},
year = {2019},
publisher = {The Science and Information Organization},
volume = {10},
number = {8},
author = {Wafa M AlShwaish and Maali Ibr. Alabdulhafith}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org