The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111089
PDF

Deep Acoustic Embeddings for Identifying Parkinsonian Speech

Author 1: Zafi Sherhan Syed
Author 2: Sajjad Ali Memon
Author 3: Abdul Latif Memon

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 10, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Parkinson’s disease is a serious neurological impair-ment which adversely affects the quality of life in individuals. While there currently does not exist any cure for this disease, it is well known that early diagnosis can be used to improve the quality of life of affected individuals through various types of therapy. Speech based screening of Parkinson’s disease is an active area of research intending to offer a non-invasive and passive tool for clinicians to monitor changes in voice that arise due to Parkinson’s disease. Whereas traditional methods for speech based identification rely on domain-knowledge based hand-crafted features, in this paper, we investigate the efficacy of and propose the deep acoustic embeddings for identification of Parkinsonian speech. To this end, we conduct several experiments to benchmark deep acoustic embeddings against handcrafted features for differentiating between speech from individuals with Parkinson’s disease and those who are healthy. We report that deep acoustic embeddings consistently perform better than domain-knowledge features. We also report on the usefulness of decision-level fusion for improving the classification performance of a model trained on these embeddings.

Keywords: Affective computing; deep acoustic embeddings; Parkinson’s disease; social signal processing

Zafi Sherhan Syed, Sajjad Ali Memon and Abdul Latif Memon, “Deep Acoustic Embeddings for Identifying Parkinsonian Speech” International Journal of Advanced Computer Science and Applications(IJACSA), 11(10), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111089

@article{Syed2020,
title = {Deep Acoustic Embeddings for Identifying Parkinsonian Speech},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111089},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111089},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {10},
author = {Zafi Sherhan Syed and Sajjad Ali Memon and Abdul Latif Memon}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org