The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Deep Acoustic Embeddings for Identifying Parkinsonian Speech

Author 1: Zafi Sherhan Syed
Author 2: Sajjad Ali Memon
Author 3: Abdul Latif Memon

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0111089

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 10, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Parkinson’s disease is a serious neurological impair-ment which adversely affects the quality of life in individuals. While there currently does not exist any cure for this disease, it is well known that early diagnosis can be used to improve the quality of life of affected individuals through various types of therapy. Speech based screening of Parkinson’s disease is an active area of research intending to offer a non-invasive and passive tool for clinicians to monitor changes in voice that arise due to Parkinson’s disease. Whereas traditional methods for speech based identification rely on domain-knowledge based hand-crafted features, in this paper, we investigate the efficacy of and propose the deep acoustic embeddings for identification of Parkinsonian speech. To this end, we conduct several experiments to benchmark deep acoustic embeddings against handcrafted features for differentiating between speech from individuals with Parkinson’s disease and those who are healthy. We report that deep acoustic embeddings consistently perform better than domain-knowledge features. We also report on the usefulness of decision-level fusion for improving the classification performance of a model trained on these embeddings.

Keywords: Affective computing; deep acoustic embeddings; Parkinson’s disease; social signal processing

Zafi Sherhan Syed, Sajjad Ali Memon and Abdul Latif Memon, “Deep Acoustic Embeddings for Identifying Parkinsonian Speech” International Journal of Advanced Computer Science and Applications(IJACSA), 11(10), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111089

@article{Syed2020,
title = {Deep Acoustic Embeddings for Identifying Parkinsonian Speech},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111089},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111089},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {10},
author = {Zafi Sherhan Syed and Sajjad Ali Memon and Abdul Latif Memon}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org