The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0111284
PDF

Multi Modal RGB D Action Recognition with CNN LSTM Ensemble Deep Network

Author 1: D. Srihari
Author 2: P. V. V. Kishore

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 12, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Human action recognition has transformed from a video processing problem into multi modal machine learning problem. The objective of this work is to perform multi modal human action recognition on an ensemble hybrid network of CNN and LSTM layers. The proposed CNN - LSTM ensemble network is a 2 - stream framework with one ensemble stream learning RGB sequences and the other depth. This proposed framework can learn both temporal and spatial dynamics in both RGB and depth modal action data. The hybrid network is found to be receptive towards both spatial and temporal fields because of the hierarchical structure of CNNs and LSTMs. Finally, to test our proposed model, we used our own BVCAction3D and three RGB D benchmark action datasets. The experiments were conducted on all the datasets using the proposed framework and was found to be effective when compared to similar deep learning architectures.

Keywords: Human action recogniiton; RGB D video data; convolutional neural networks; long short-term memory

D. Srihari and P. V. V. Kishore, “Multi Modal RGB D Action Recognition with CNN LSTM Ensemble Deep Network” International Journal of Advanced Computer Science and Applications(IJACSA), 11(12), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0111284

@article{Srihari2020,
title = {Multi Modal RGB D Action Recognition with CNN LSTM Ensemble Deep Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0111284},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0111284},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {12},
author = {D. Srihari and P. V. V. Kishore}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org