The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110276
PDF

Performance Evaluation of Deep Autoencoder Network for Speech Emotion Recognition

Author 1: Maria AndleebSiddiqui
Author 2: Wajahat Hussain
Author 3: Syed Abbas Ali
Author 4: Danish-ur-Rehman

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 2, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The learning methods with multiple levels of representation is called deep learning methods. The composition of simple but now linear modules results in deep-learning model. Deep-learning in near future will have many more success, because it requires very little engineering in hands and it can easily take ample amount of data for computation. In this paper the deep learning network is used to recognize speech emotions. The deep Autoencoder is constructed to learn the speech emotions (Angry, Happy, Neutral, and Sad) of Normal and Autistic Children. Experimental results evident that the categorical classification accuracy of speech is 46.5% and 33.3% for Normal and Autistic children speech respectively. Whereas, Auto encoder shows a very low classification accuracy of 26.1% for only happy emotion and no classification accuracy for Angry, Neutral and Sad emotions.

Keywords: Auto-encoder; emotions; DNN; classification accuracy; autism

Maria AndleebSiddiqui, Wajahat Hussain, Syed Abbas Ali and Danish-ur-Rehman, “Performance Evaluation of Deep Autoencoder Network for Speech Emotion Recognition” International Journal of Advanced Computer Science and Applications(IJACSA), 11(2), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110276

@article{AndleebSiddiqui2020,
title = {Performance Evaluation of Deep Autoencoder Network for Speech Emotion Recognition},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110276},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110276},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {2},
author = {Maria AndleebSiddiqui and Wajahat Hussain and Syed Abbas Ali and Danish-ur-Rehman}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org