The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110306
PDF

ECG and EEG Pattern Classifications and Dimensionality Reduction with Laplacian Eigenmaps

Author 1: Monica Fira
Author 2: Liviu Goras

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 3, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we investigate the effect of dimensionality reduction using Laplacian Eigenmap (LE) in the case of several classes of electroencephalogram (EEG) and electrocardiographic (ECG) signals. Classification results based on a boosting method for EEG signals exhibiting P300 wave and k-nearest neighbour for ECG signals belonging to 8 classes are computed and compared. For EEG signals, the difference between the rate of classification in the original and reduced space with LE is relatively small, only several percent (maximum 10% for the 3 – dimensional space), and the original EEG signals belonging to a 128-dimensional space. This means that, for classification purposes the dimensionality of EEG signals can be reduced without significantly affecting the global and local arrangement of data. Moreover, for EEG signals that are collected at high frequencies, a first stage of data preprocessing can be done by reducing the dimensionality. For ECG signals, for segmentation with and without centering of the R wave, there is a slight decrease in the classification rate at small data sizes. It is found that for an initial dimensionality of 301 the size of the signals can be reduced to 30 without significantly affecting the classification rate. Below this dimension there is a decrease of the classification rate but still the results are very good even for very small dimensions, such as 3. It has been found that the classification results in the reduced space are remarkable close to those obtained for the initial spaces even for small dimensions.

Keywords: Laplacian Eigenmaps; dimensionality reduction; biosignals; electrocardiographic signal (ECG); electroencephalogram (EEG)

Monica Fira and Liviu Goras, “ECG and EEG Pattern Classifications and Dimensionality Reduction with Laplacian Eigenmaps” International Journal of Advanced Computer Science and Applications(IJACSA), 11(3), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110306

@article{Fira2020,
title = {ECG and EEG Pattern Classifications and Dimensionality Reduction with Laplacian Eigenmaps},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110306},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110306},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {3},
author = {Monica Fira and Liviu Goras}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org