The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110520
PDF

Clustering-Based Trajectory Outlier Detection

Author 1: Eman O. Eldawy
Author 2: Hoda M.O. Mokhtar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The improvement in mobile computing techniques has generated massive trajectory data, which represent the mobility of moving objects like vehicles, animals, and people. Mining trajectory data and especially outlier detection in trajectory data is an attractive and challenging topic that fascinated many researchers. In this paper, we propose a Clustering-Based Trajectory Outlier Detection algorithm (CB-TOD). The proposed algorithm partitions a trajectory into line segments and decreases those line segments to a smaller set (Summary-trajectory SS(t)) without affecting the spatial properties of the original trajectory. After that the CB-TOD algorithm using a clustering method to detect the cluster with the smallest number of segments for a trajectory and a small number of neighbors to be sub-trajectory outliers for this trajectory. Also, our proposed algorithm can detect outlier trajectories in the dataset. The main advantage of CB-TOD algorithm is reducing the computational time for outlier detection especially for big trajectory data without affecting the efficiency of the outlier detection results. Experimental results demonstrate that CB-TOD outperforms the state of art existing algorithms in identifying outlier sub-trajectories and also outlier trajectories in real trajectory dataset.

Keywords: Data mining; outlier detection; trajectory data processing; clustering

Eman O. Eldawy and Hoda M.O. Mokhtar, “Clustering-Based Trajectory Outlier Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110520

@article{Eldawy2020,
title = {Clustering-Based Trajectory Outlier Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110520},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110520},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Eman O. Eldawy and Hoda M.O. Mokhtar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org