The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110527
PDF

Generalized Approach to Analysis of Multifractal Properties from Short Time Series

Author 1: Lyudmyla Kirichenko
Author 2: Abed Saif Ahmed Alghawli
Author 3: Tamara Radivilova

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The paper considers a generalized approach to the time series multifractal analysis. The focus of research is on the correct estimation of multifractal characteristics from short time series. Based on numerical modeling and estimating, the main disadvantages and advantages of the sample fractal characteristics obtained by three methods: the multifractal fluctuation detrended analysis, wavelet transform modulus maxima and multifractal analysis using discrete wavelet transform are studied. The generalized Hurst exponent was chosen as the basic characteristic for comparing the accuracy of the methods. A test statistic for determining the monofractal properties of a time series using the multifractal fluctuation detrended analysis is proposed. A generalized approach to estimating the multifractal characteristics of short time series is developed and practical recommendations for its implementation are proposed. A significant part of the study is devoted to practical applications of fractal analysis. The proposed approach is illustrated by the examples of multifractal analysis of various real fractal time series.

Keywords: Fractal time series; multifractal analysis; estimation of multifractal characteristics; generalized Hurst exponent; practical applications of fractal analysis

Lyudmyla Kirichenko, Abed Saif Ahmed Alghawli and Tamara Radivilova, “Generalized Approach to Analysis of Multifractal Properties from Short Time Series” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110527

@article{Kirichenko2020,
title = {Generalized Approach to Analysis of Multifractal Properties from Short Time Series},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110527},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110527},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Lyudmyla Kirichenko and Abed Saif Ahmed Alghawli and Tamara Radivilova}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org