The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110508
PDF

Adaptive Hybrid Synchronization Primitives: A Reinforcement Learning Approach

Author 1: Fadai Ganjaliyev

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 5, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The choice of synchronization primitive used to protect shared resources is a critical aspect of application performance and scalability, which has become extremely unpredictable with the rise of multicore machines. Neither of the most commonly used contention management strategies works well for all cases: spinning provides quick lock handoff and is attractive in an undersubscribed situation but wastes processor cycles in oversubscribed scenarios, whereas blocking saves processor resources and is preferred in oversubscribed cases but adds up to the critical path by lengthening the lock handoff phase. Hybrids, such as spin-then-block and spin-then-park, tackle this problem by switching between spinning and blocking depending on the contention level on the lock or the system load. Consequently, threads follow a fixed strategy and cannot learn and adapt to changes in system behavior. To this end, it is proposed to use principles of machine learning to formulate hybrid methods as a reinforcement learning problem that will overcome these limitations. In this way, threads can intelligently learn when they should spin or sleep. The challenges of the suggested technique and future work is also briefly discussed.

Keywords: Spinning; sleeping; blocking; spin-then-block; spin-then-park; reinforcement learning

Fadai Ganjaliyev, “Adaptive Hybrid Synchronization Primitives: A Reinforcement Learning Approach” International Journal of Advanced Computer Science and Applications(IJACSA), 11(5), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110508

@article{Ganjaliyev2020,
title = {Adaptive Hybrid Synchronization Primitives: A Reinforcement Learning Approach},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110508},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110508},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {5},
author = {Fadai Ganjaliyev}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org