The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110753
PDF

Method for Automatically Processing Outliers of a Quantitative Variable

Author 1: NIANGORAN Aristhophane Kerandel
Author 2: MENSAH Edoété Patrice
Author 3: ACHIEPO Odilon Yapo M
Author 4: DIAKO Doffou Jérome

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 7, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In data analysis processes, the treatment of outliers in quantitative variables is very critical as it affects the quality of the conclusions. However, despite the existence of very good tools for detecting outliers, dealing with them is not always straightforward. Indeed, statisticians recommend modeling the process underlying outliers to identify the best way to deal with them. In the context of Data Science and Machine Learning, the identification of processes that generate outliers remains problematic because this work requires a visual human interpretation of certain statistical tools. The techniques proposed so far, are systematic imputations by a central tendency characteristic, usually the arithmetic mean or median. Although adapted to the framework of Data Science and Machine Learning, these different approaches cause a fundamental problem, that of modifying the distribution of the initial data. The purpose of our paper is to propose an algorithm that allows the automatic processing of outliers by a software while preserving the distributional structure of the treated variable, whatever the law of probability is. The method is based on the moustache box theory developed by John Tukey. The procedure is tested with existing real data. All treatments are performed with the R programming language.

Keywords: Outliers; boxplot; exploratory data analysis; Programming R; data science

NIANGORAN Aristhophane Kerandel, MENSAH Edoété Patrice, ACHIEPO Odilon Yapo M and DIAKO Doffou Jérome, “Method for Automatically Processing Outliers of a Quantitative Variable” International Journal of Advanced Computer Science and Applications(IJACSA), 11(7), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110753

@article{Kerandel2020,
title = {Method for Automatically Processing Outliers of a Quantitative Variable},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110753},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110753},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {7},
author = {NIANGORAN Aristhophane Kerandel and MENSAH Edoété Patrice and ACHIEPO Odilon Yapo M and DIAKO Doffou Jérome}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org