The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110758
PDF

Entropy-Based k Shortest-Path Routing for Motorcycles: A Simulated Case Study in Jakarta

Author 1: Muhamad Asvial
Author 2: M. Faridz Gita Pandoyo
Author 3: Ajib Setyo Arifin

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 7, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Traffic congestion is a serious problem in rapidly developing urban areas like Jakarta, Indonesia’s capital city. To avoid the congestion, motorcycles assisted with navigation apps are popular solution. However, the existing navigation apps do not take into account traffic data. This paper proposes an open-source navigation app for motorcycle by taking into account the traffic data and wide road to avoid congestion. The propose navigation app uses entropy-balanced k shortest paths (EBkSP) algorithm to suggest different routes to different users to prevent further congestion. Tests show that the proposed route planning system in the app gives routes that are significantly shorter than motorcycle routes planned by Google Maps. The EBkSP algorithm also distributes vehicles more evenly among routes than the random kSP algorithm and does so in a practical amount of computing time.

Keywords: Traffic congestion; motorcycle; navigation apps; EBkSP

Muhamad Asvial, M. Faridz Gita Pandoyo and Ajib Setyo Arifin, “Entropy-Based k Shortest-Path Routing for Motorcycles: A Simulated Case Study in Jakarta” International Journal of Advanced Computer Science and Applications(IJACSA), 11(7), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110758

@article{Asvial2020,
title = {Entropy-Based k Shortest-Path Routing for Motorcycles: A Simulated Case Study in Jakarta},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110758},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110758},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {7},
author = {Muhamad Asvial and M. Faridz Gita Pandoyo and Ajib Setyo Arifin}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org