The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Machine Learning-Based Phishing Attack Detection

Author 1: Sohrab Hossain
Author 2: Dhiman Sarma
Author 3: Rana Joyti Chakma

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2020.0110945

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper explores machine learning techniques and evaluates their performances when trained to perform against datasets consisting of features that can differentiate between a Phishing Website and a safe one. This capability of telling these sites apart from one another is vital in the modern-day internet surfing. As more and more of our resources shift online, one vulnerability and a leak of sensitive information by someone could bring everything down in a connected network. This paper's objective through this research is to highlight the best technique for identifying one of the most commonly occurring cyberattacks and thus allow faster identification and blacklisting of such sites, therefore leading to a safer and more secure web surfing experience for everyone. To achieve this, we describe each of the techniques we look into in great detail and use different evaluation techniques to portray their performance visually. After pitting all of these techniques against each other, we have concluded with an explanation in this paper that Random Forest Classifier does indeed work best for Phishing Website Detection.

Keywords: Phishing attack; phishing attack detection; phishing website detection; machine learning; random forest classifier

Sohrab Hossain, Dhiman Sarma and Rana Joyti Chakma, “Machine Learning-Based Phishing Attack Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110945

@article{Hossain2020,
title = {Machine Learning-Based Phishing Attack Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110945},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110945},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Sohrab Hossain and Dhiman Sarma and Rana Joyti Chakma}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org