The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2020.0110945
PDF

Machine Learning-Based Phishing Attack Detection

Author 1: Sohrab Hossain
Author 2: Dhiman Sarma
Author 3: Rana Joyti Chakma

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 11 Issue 9, 2020.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper explores machine learning techniques and evaluates their performances when trained to perform against datasets consisting of features that can differentiate between a Phishing Website and a safe one. This capability of telling these sites apart from one another is vital in the modern-day internet surfing. As more and more of our resources shift online, one vulnerability and a leak of sensitive information by someone could bring everything down in a connected network. This paper's objective through this research is to highlight the best technique for identifying one of the most commonly occurring cyberattacks and thus allow faster identification and blacklisting of such sites, therefore leading to a safer and more secure web surfing experience for everyone. To achieve this, we describe each of the techniques we look into in great detail and use different evaluation techniques to portray their performance visually. After pitting all of these techniques against each other, we have concluded with an explanation in this paper that Random Forest Classifier does indeed work best for Phishing Website Detection.

Keywords: Phishing attack; phishing attack detection; phishing website detection; machine learning; random forest classifier

Sohrab Hossain, Dhiman Sarma and Rana Joyti Chakma, “Machine Learning-Based Phishing Attack Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 11(9), 2020. http://dx.doi.org/10.14569/IJACSA.2020.0110945

@article{Hossain2020,
title = {Machine Learning-Based Phishing Attack Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2020.0110945},
url = {http://dx.doi.org/10.14569/IJACSA.2020.0110945},
year = {2020},
publisher = {The Science and Information Organization},
volume = {11},
number = {9},
author = {Sohrab Hossain and Dhiman Sarma and Rana Joyti Chakma}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org