The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0120114
PDF

Customer Profiling for Malaysia Online Retail Industry using K-Means Clustering and RM Model

Author 1: Tan Chun Kit
Author 2: Nurulhuda Firdaus Mohd Azmi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 1, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Malaysia's online retail industry is growing sophisticated for the past years and is not expected to stop growing in the following years. Meanwhile, customers are becoming smarter about buying. Online Retailers have to identify and understand their customer needs to provide appropriate services/products to the demanding customer and attracting new customers. Customer profiling is a method that helps retailers to understand their customers. This study examines the usefulness of the LRFMP model (Length, Recency, Frequency, Monetary, and Periodicity), the models that comprised part of its variables, and its predecessor RFM model using the Silhouette Index test. Furthermore, an automated Elbow Method was employed and its usefulness was compared against the conventional visual analytics. As result, the RM model was selected as the finest model in performing K-Means Clustering in the given context. Despite the unusefulness of the LRFMP model in K-Means Clustering, some of its variables remained useful in the customer profiling process by providing extra information on cluster characteristics. Moreover, the effect of sample size on cluster validity was investigated. Lastly, the limitations and future research recommendations are discussed alongside the discussion to bridge for future works.

Keywords: Customer Profiling; LRFMP; RFM; Data Mining; K-Means Clustering

Tan Chun Kit and Nurulhuda Firdaus Mohd Azmi, “Customer Profiling for Malaysia Online Retail Industry using K-Means Clustering and RM Model” International Journal of Advanced Computer Science and Applications(IJACSA), 12(1), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120114

@article{Kit2021,
title = {Customer Profiling for Malaysia Online Retail Industry using K-Means Clustering and RM Model},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0120114},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0120114},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {1},
author = {Tan Chun Kit and Nurulhuda Firdaus Mohd Azmi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org