The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121129
PDF

A Hybrid Deep Neural Network for Human Activity Recognition based on IoT Sensors

Author 1: Zakaria BENHAILI
Author 2: Youssef BALOUKI
Author 3: Lahcen MOUMOUN

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 11, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Internet of things (IOT) sensors, has received a lot of interest in recent years due to the rise of application demands in domains like ubiquitous and context-aware computing, activity surveillance, ambient assistive living and more specifically in Human activity recognition. The recent development in deep learning allows to extract high-level features automatically, and eliminates the reliance on traditional machine learning techniques, which depended heavily on hand crafted features. In this paper, we introduce a network that can identify a variety of everyday human actions that can be carried out in a smart home environment, by using raw signals generated from Internet of Thing’s motion sensors. We design our architecture basing on a combination of convolutional neural network (CNN) and Gated recurrent unit (GRU) layers. The CNN is first deployed to extract local and scale-invariance features, then the GRU layers are used to extract sequential temporal dependencies. We tested our model called (CNGRU) on three public datasets. It achieves an accuracy better or comparable to existing state of the art models.

Keywords: IoT; deep learning; CNN; GRU; CNGRU; human activity recognition

Zakaria BENHAILI, Youssef BALOUKI and Lahcen MOUMOUN, “A Hybrid Deep Neural Network for Human Activity Recognition based on IoT Sensors” International Journal of Advanced Computer Science and Applications(IJACSA), 12(11), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121129

@article{BENHAILI2021,
title = {A Hybrid Deep Neural Network for Human Activity Recognition based on IoT Sensors},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121129},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121129},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {11},
author = {Zakaria BENHAILI and Youssef BALOUKI and Lahcen MOUMOUN}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org