The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.0121201
PDF

Machine Learning Augmented Breast Tumors Classification using Magnetic Resonance Imaging Histograms

Author 1: Ahmed M. Sayed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 12, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: At present, breast cancer survival rate significantly varies with the stage at which it was first detected. It is crucial to achieve early detection of malignant tumors to reduce their negative effects. Magnetic resonance imaging (MRI) is currently an important imaging modality in the detection of breast tumors. A need exists to develop computer aided methods to provide early diagnosis of malignancy. In this study, I present machine learning models utilizing new image histogram features using the pixels least significant bit. The models were first trained on an MRI breast dataset that included 227 images captured using the short TI inversion recovery (STIR) sequence and diagnosed as either benign or malignant. Three data classification methods were utilized to differentiate between the tumor’s classes. The examined classification methods were the Discriminant Analysis, K-Nearest Neighborhood, and the Random Forest. Algorithms’ testing was performed on a completely different dataset that included another 186 MRI STIR images showing breast tumors with verified biopsy diagnostics. A significant tumor classification efficiency was found, as judged by the pathological diagnosis. Classification’s accuracy was calculated as 94.1% for the DA, 94.6% for the KNN and 80.6% for the RF algorithm. Receiver operating curves also showed significant classification performances. The proposed tumor classification techniques can be used as non-invasive and fast diagnostic tools for breast tumors, with the capability of significantly reducing false errors associated with common MRI imaging-based diagnosis.

Keywords: Tumor classification; histogram analysis; magnetic resonance imaging; breast cancer; machine learning

Ahmed M. Sayed, “Machine Learning Augmented Breast Tumors Classification using Magnetic Resonance Imaging Histograms” International Journal of Advanced Computer Science and Applications(IJACSA), 12(12), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0121201

@article{Sayed2021,
title = {Machine Learning Augmented Breast Tumors Classification using Magnetic Resonance Imaging Histograms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.0121201},
url = {http://dx.doi.org/10.14569/IJACSA.2021.0121201},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {12},
author = {Ahmed M. Sayed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org