The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2021.01206103
PDF

A Self-adaptive Algorithm for Solving Basis Pursuit Denoising Problem

Author 1: Mengkai Zhu
Author 2: Xu Zhang
Author 3: Bing Xue
Author 4: Hongchun Sun

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 12 Issue 6, 2021.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we further consider a method for solving the basis pursuit denoising problem (BPDP), which has received considerable attention in signal processing and statistical inference. To this end, a new self-adaptive algorithm is proposed, its global convergence results is established. Furthermore, we also show that the method is sublinearly convergent rate of O( 1/k). Finally, the availability of given method is shown via somek numerical examples.

Keywords: Basis pursuit denoising problem; algorithm; global convergence; sublinearly convergent rate; sparse signal recovery

Mengkai Zhu, Xu Zhang, Bing Xue and Hongchun Sun, “A Self-adaptive Algorithm for Solving Basis Pursuit Denoising Problem” International Journal of Advanced Computer Science and Applications(IJACSA), 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.01206103

@article{Zhu2021,
title = {A Self-adaptive Algorithm for Solving Basis Pursuit Denoising Problem},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2021.01206103},
url = {http://dx.doi.org/10.14569/IJACSA.2021.01206103},
year = {2021},
publisher = {The Science and Information Organization},
volume = {12},
number = {6},
author = {Mengkai Zhu and Xu Zhang and Bing Xue and Hongchun Sun}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org