The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Indexing
  • Submit your Paper
  • Guidelines
  • Fees
  • Current Issue
  • Archives
  • Editors
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.01310112
PDF

Anomaly Detection in Video Surveillance using SlowFast Resnet-50

Author 1: Mahasweta Joshi
Author 2: Jitendra Chaudhari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 10, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Surveillance systems are widely used in malls, colleges, schools, shopping centers, airports, etc. This could be due to the increasing crime rate in daily life. It is a very tedious task to monitor and detect abnormal activities 24x7 from the surveillance system. So the detection of abnormal events from videos is a hugely demanding area of research. In this paper, the proposed framework is used for deep learning concepts. Here SlowFast Resnet50 has been used to extract and process the features. After that, the deep neural network has been applied to generate a class using the Softmax function. The proposed framework has been applied to the UCF-Crime dataset using Graphics Processing Unit (GPU). It includes 1900 videos with 13 classes. Our proposed algorithm is evaluated by accuracy. Our proposed algorithm works better than the existing algorithm. It achieves 47.8% more accuracy than state of art method and also achieves good accuracy compared to other approaches used for detecting abnormal activity on the UCF-Crime dataset.

Keywords: Accuracy; GPU (Graphics Processing Unit); SlowFast Resnet50; Softmax; UCF-Crime dataset

Mahasweta Joshi and Jitendra Chaudhari, “Anomaly Detection in Video Surveillance using SlowFast Resnet-50” International Journal of Advanced Computer Science and Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/IJACSA.2022.01310112

@article{Joshi2022,
title = {Anomaly Detection in Video Surveillance using SlowFast Resnet-50},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.01310112},
url = {http://dx.doi.org/10.14569/IJACSA.2022.01310112},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {10},
author = {Mahasweta Joshi and Jitendra Chaudhari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2024

4-5 April 2024

  • Berlin, Germany

Computing Conference 2024

11-12 July 2024

  • London, United Kingdom

IntelliSys 2024

5-6 September 2024

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org