The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.01310112
PDF

Anomaly Detection in Video Surveillance using SlowFast Resnet-50

Author 1: Mahasweta Joshi
Author 2: Jitendra Chaudhari

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 10, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Surveillance systems are widely used in malls, colleges, schools, shopping centers, airports, etc. This could be due to the increasing crime rate in daily life. It is a very tedious task to monitor and detect abnormal activities 24x7 from the surveillance system. So the detection of abnormal events from videos is a hugely demanding area of research. In this paper, the proposed framework is used for deep learning concepts. Here SlowFast Resnet50 has been used to extract and process the features. After that, the deep neural network has been applied to generate a class using the Softmax function. The proposed framework has been applied to the UCF-Crime dataset using Graphics Processing Unit (GPU). It includes 1900 videos with 13 classes. Our proposed algorithm is evaluated by accuracy. Our proposed algorithm works better than the existing algorithm. It achieves 47.8% more accuracy than state of art method and also achieves good accuracy compared to other approaches used for detecting abnormal activity on the UCF-Crime dataset.

Keywords: Accuracy; GPU (Graphics Processing Unit); SlowFast Resnet50; Softmax; UCF-Crime dataset

Mahasweta Joshi and Jitendra Chaudhari, “Anomaly Detection in Video Surveillance using SlowFast Resnet-50” International Journal of Advanced Computer Science and Applications(IJACSA), 13(10), 2022. http://dx.doi.org/10.14569/IJACSA.2022.01310112

@article{Joshi2022,
title = {Anomaly Detection in Video Surveillance using SlowFast Resnet-50},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.01310112},
url = {http://dx.doi.org/10.14569/IJACSA.2022.01310112},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {10},
author = {Mahasweta Joshi and Jitendra Chaudhari}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Computer Vision Conference
  • Healthcare Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org