The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0131198
PDF

Multi-Scale ConvLSTM Attention-Based Brain Tumor Segmentation

Author 1: Brahim AIT SKOURT
Author 2: Aicha MAJDA
Author 3: Nikola S. Nikolov
Author 4: Ahlame BEGDOURI

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 11, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In computer vision, there are various machine learning algorithms that have proven to be very effective. Con-volutional Neural Networks (CNNs) are a kind of deep learning algorithms that became mostly used in image processing with a remarkable success rate compared to conventional machine learning algorithms. CNNs are widely used in different computer vision fields, especially in the medical domain. In this study, we perform a semantic brain tumor segmentation using a novel deep learning architecture we called multi-scale ConvLSTM Attention Neural Network, that resides in Convolutional Long-Short-Term-Memory (ConvLSTM) and Attention units with the use of multiple feature extraction blocks such as Inception, Squeeze-Excitation and Residual Network block. The use of such blocks separately is known to boost the performance of the model, in our case we show that their combination has also a beneficial effect on the accuracy. Experimental results show that our model performs brain tumor segmentation effectively compared to standard U-Net, Attention U-net and Fully Connected Network (FCN), with 79.78 Dice score using our method compared to 78.61, 73.65 and 72.89 using Attention U-net, standard U-net and FCN respectively.

Keywords: Convolutional neural networks; image processing; semantic brain tumor segmentation; convolutional long short term memory; inception; squeeze-excitation; residual-network; attention units

Brahim AIT SKOURT, Aicha MAJDA, Nikola S. Nikolov and Ahlame BEGDOURI, “Multi-Scale ConvLSTM Attention-Based Brain Tumor Segmentation” International Journal of Advanced Computer Science and Applications(IJACSA), 13(11), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131198

@article{SKOURT2022,
title = {Multi-Scale ConvLSTM Attention-Based Brain Tumor Segmentation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131198},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131198},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {11},
author = {Brahim AIT SKOURT and Aicha MAJDA and Nikola S. Nikolov and Ahlame BEGDOURI}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org