The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

The Role of Machine Learning in Remote Sensing for Agriculture Drought Monitoring: A Systematic Review

Author 1: Aries Suharso
Author 2: Yeni Hediyeni
Author 3: Suria Darma Tarigan
Author 4: Yandra Arkeman

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2022.0131290

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 12, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Agricultural drought is still difficult to anticipate even though there have been developments in remote sensing technology, especially satellite imagery that is useful for farmers in monitoring crop conditions. The availability of open and free satellite imagery still has a weakness, namely the level of resolution is low and coarse with atmospheric disturbances in the form of cloud cover, as well as the location and period for taking images that are different from the presence of weather stations on Earth. This problem is a challenge for researchers trying to monitoring agricultural drought conditions through satellite imagery. One approach that has recently used is high computational techniques through machine learning, which is able to predict satellite image data according to the conditions of mapping land types and plants in the field. Furthermore, using time series data from satellite imagery, a predictive model of crop cycles can be regarding future crop drought conditions. So, through this technology, we can encourage farmers to make decisions to anticipate the dangers of agricultural drought. Unfortunately, exploration of the use of machine learning for classification and prediction of agricultural drought conditions has not conducted, and the existing methods can still improve. This review aims to present a comprehensive overview of methods that used to monitor agricultural drought using remote sensing and machine learning, which are the subjects of future research.

Keywords: Drought monitoring; exploration of the use of machine learning; Landsat imagery; remote sensing

Aries Suharso, Yeni Hediyeni, Suria Darma Tarigan and Yandra Arkeman, “The Role of Machine Learning in Remote Sensing for Agriculture Drought Monitoring: A Systematic Review” International Journal of Advanced Computer Science and Applications(IJACSA), 13(12), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0131290

@article{Suharso2022,
title = {The Role of Machine Learning in Remote Sensing for Agriculture Drought Monitoring: A Systematic Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0131290},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0131290},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {12},
author = {Aries Suharso and Yeni Hediyeni and Suria Darma Tarigan and Yandra Arkeman}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org