The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130207
PDF

Combining Multiple Seismic Attributes using Convolutional Neural Networks

Author 1: Abrar Alotaibi
Author 2: Mai Fadel
Author 3: Amani Jamal
Author 4: Ghadah Aldabbagh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 2, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Seismic exploration involves estimating the properties of the Earth's subsurface from reflected seismic waves then visualizing the resulting seismic data and its attributes. These data and derived seismic attributes provide complementary information and reduce the amount of time and effort for the geoscientist. Multiple conventional methods to combine various seismic attributes exist, but the number of attributes is always limited, and the quality of the resulting image varies. This paper proposes a method that can be used to overcome these limitations. In this paper, we propose using Deep Learning-based image fusion models to combine seismic attributes. By using convolutional neural network (CNN) capabilities in feature extraction, the resulting image quality is better than that obtained with conventional methods. This work implemented two models and conducted a number of experiments using them. Several techniques have been used to evaluate the results, such as visual inspection, and using image fusion metrics. The experiments show that the Image-fusion Framework, using the Image Fusion Framework Based on CNN (IFCNN) approach, outperformed all other models in both quantitative and visual analysis. Its QAB/F and MS-SSIM scores are 50% and 10%, respectively, higher than all other models. Also, IFCNN was evaluated against the current state-of-the-art solution, Octree, in a comparative study. IFCNN overcomes the limitation of the Octree method and succeeds in combining nine seismic attributes with a better-combining quality, with QAB/F and NAB/F scores being 40% higher.

Keywords: CNNs; neural networks; seismic attributes; seismic images; image fusion

Abrar Alotaibi, Mai Fadel, Amani Jamal and Ghadah Aldabbagh, “Combining Multiple Seismic Attributes using Convolutional Neural Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 13(2), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130207

@article{Alotaibi2022,
title = {Combining Multiple Seismic Attributes using Convolutional Neural Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130207},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130207},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {2},
author = {Abrar Alotaibi and Mai Fadel and Amani Jamal and Ghadah Aldabbagh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org