The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130332
PDF

Unsupervised Chest X-ray Opacity Classification using Minimal Deep Features

Author 1: Mohd Zulfaezal Che Azemin
Author 2: Mohd Izzuddin Mohd Tamrin
Author 3: Mohd Adli Md Ali
Author 4: Iqbal Jamaludin

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 3, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Data privacy has been a concern in medical imaging research. One important step to minimize the sharing of patient’s information is by limiting the use of original images in the workflow. This research aimed to use minimal deep learning features in detecting anomaly in chest X-ray (CXR) images. A total of 3,504 CXRs were processed using a pre-trained deep learning convolutional neural network to output ten discriminatory features which were then used in the k-mean algorithm to find underlying similarities between the features for further clustering. Two clusters were set to distinguish between “Opacity” and “Normal” CXRs with the accuracy, sensitivity, specificity, and positive predictive value of 80.9%, 86.6%, 71.5% and 83.1%, respectively. With only ten features required to build the unsupervised model, this would pave the way for future federated learning research where actual CXRs can remain distributed over multiple centers without sacrificing the anonymity of the patients.

Keywords: Unsupervised classification; minimal deep features; convolution neural network; chest x-ray; airspace opacity

Mohd Zulfaezal Che Azemin, Mohd Izzuddin Mohd Tamrin, Mohd Adli Md Ali and Iqbal Jamaludin, “Unsupervised Chest X-ray Opacity Classification using Minimal Deep Features” International Journal of Advanced Computer Science and Applications(IJACSA), 13(3), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130332

@article{Azemin2022,
title = {Unsupervised Chest X-ray Opacity Classification using Minimal Deep Features},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130332},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130332},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {3},
author = {Mohd Zulfaezal Che Azemin and Mohd Izzuddin Mohd Tamrin and Mohd Adli Md Ali and Iqbal Jamaludin}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org