The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130347
PDF

Deep Learning Applications in Solid Waste Management: A Deep Literature Review

Author 1: Sana Shahab
Author 2: Mohd Anjum
Author 3: M. Sarosh Umar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 3, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Solid waste management (SWM) has recently received more attention, especially in developing countries, for smart and sustainable development. SWM system encompasses various interconnected processes which contain numerous complex operations. Recently, deep learning (DL) has attained momentum in providing alternative computational techniques to determine the solution of various SWM problems. Researchers have focused on this domain; therefore, significant research has been published, especially in the last decade. The literature shows that no study evaluates the potential of DL to solve the various SWM problems. The study performs a systematic literature review (SLR) which has complied 40 studies published between 2019 and 2021 in reputed journals and conferences. The selected research studies have implemented the various DL models and analyzed the application of DL in different SWM areas, namely waste identification and segregation and prediction of waste generation. The study has defined the systematic review protocol that comprises various criteria and a quality assessment process to select the research studies for review. The review demonstrates the comprehensive analysis of different DL models and techniques implemented in SWM. It also highlights the application domains and compares the reported performance of selected studies. Based on the reviewed work, it can be concluded that DL exhibits the plausible performance to detect and classify the different types of waste. The study also explains the deep convolutional neural network with the computational requirement and determine the research gaps with future recommendations.

Keywords: Solid waste management; systematic literature review; deep learning; convolutional neural networks

Sana Shahab, Mohd Anjum and M. Sarosh Umar, “Deep Learning Applications in Solid Waste Management: A Deep Literature Review” International Journal of Advanced Computer Science and Applications(IJACSA), 13(3), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130347

@article{Shahab2022,
title = {Deep Learning Applications in Solid Waste Management: A Deep Literature Review},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130347},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130347},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {3},
author = {Sana Shahab and Mohd Anjum and M. Sarosh Umar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org