The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130351
PDF

Bayesian Hyperparameter Optimization and Ensemble Learning for Machine Learning Models on Software Effort Estimation

Author 1: Robert Marco
Author 2: Sakinah Sharifah Syed Ahmad
Author 3: Sabrina Ahmad

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 3, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In recent decades, various software effort estimation (SEE) algorithms have been suggested. Unfortunately, generating high-precision accuracy is still a major challenge in the context of SEE. The use of traditional techniques and parametric approaches is largely inaccurate because they produce biased and subjective accuracy. Meanwhile, none of the machine learning methods performed well. This study applies the AdaBoost ensemble learning method and random forest (RF), on the other hand the Bayesian optimization method is applied to determine the hyperparameters of this model. The PROMISE repository and the ISBSG dataset were used to build the SEE model. The developed model was comprehensively compared with four machine learning methods (classification and regression tree, k-nearest neighbor, multilayer perceptron, and support vector regression) under 3-fold cross validation (CV). It can be seen that the RF method based on AdaBoost ensemble learning and bayesian optimization outperforms this approach. In addition, the AdaBoost-based model assigns a feature importance rating, which makes it a promising tool in software effort prediction.

Keywords: Bayesian optimization; adaboost ensemble learning; random forest; software effort estimation

Robert Marco, Sakinah Sharifah Syed Ahmad and Sabrina Ahmad, “Bayesian Hyperparameter Optimization and Ensemble Learning for Machine Learning Models on Software Effort Estimation” International Journal of Advanced Computer Science and Applications(IJACSA), 13(3), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130351

@article{Marco2022,
title = {Bayesian Hyperparameter Optimization and Ensemble Learning for Machine Learning Models on Software Effort Estimation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130351},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130351},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {3},
author = {Robert Marco and Sakinah Sharifah Syed Ahmad and Sabrina Ahmad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org