The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130578
PDF

Empirical Study of a Spatial Analysis for Prone Road Traffic Accident Classification based on MCDM Method

Author 1: Anik Vega Vitianingsih
Author 2: Zahriah Othman
Author 3: Safiza Suhana Kamal Baharin
Author 4: Aji Suraji

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 5, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Spatial analysis techniques are widely used as an effective approach for prone road traffic accident classification. This paper will present the results of empirical behavioral testing on the spatial analysis for prone road traffic accident classification using the Multicriteria Decision Making (MCDM) method. The performance of MCDM is compared on arterial and collector road types processed with multicriteria parameters. MCDM was chosen because it can be used as a decision making based on an alternative selection with many criteria. Empirical tests of the MCDM method used include Weighted Sum Model (WSM), Weighted Product (WP), Simple Additive Weighting (SAW), Weighted Product Model (WPM), Multi-Attribute Utility Theory (MAUT), Technique for Others Reference by Similarity to Ideal Solution (TOPSIS), and Analytical Hierarchy Process (AHP). The multicriteria parameter weight values are based on expert judgment and the Fuzzy-AHP method (EJ-AHP), which comprises volume-to-capacity ratio (VCR), international roughness index (IRI), vehicle type, horizontal alignment, vertical alignment, design speed, and shoulder. Then, the performance of the models was compared to determine the value of accuracy, precision, recall, and F1-score as decision-making on the prone road traffic accident classification using Multicriteria Evaluation Techniques (MCE). The empirical test results on arterial roads show that the SAW and TOPSIS methods have the same performance and are superior to other methods, with an accuracy value of 63%. However, the results on the collector road type show that the accuracy value of the AHP method outperforms other methods with an accuracy value of 70%.

Keywords: Spatial Analysis; GIS; prone road traffic accident; MCDM Model; WSM; WP; SAW; WPM; MAUT; TOPSIS; AHP

Anik Vega Vitianingsih, Zahriah Othman, Safiza Suhana Kamal Baharin and Aji Suraji, “Empirical Study of a Spatial Analysis for Prone Road Traffic Accident Classification based on MCDM Method” International Journal of Advanced Computer Science and Applications(IJACSA), 13(5), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130578

@article{Vitianingsih2022,
title = {Empirical Study of a Spatial Analysis for Prone Road Traffic Accident Classification based on MCDM Method},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130578},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130578},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {5},
author = {Anik Vega Vitianingsih and Zahriah Othman and Safiza Suhana Kamal Baharin and Aji Suraji}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org