The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130697
PDF

Construction of a Repeatable Framework for Prostate Cancer Lesion Binary Semantic Segmentation using Convolutional Neural Networks

Author 1: Ian Vincent O. Mirasol
Author 2: Patricia Angela R. Abu
Author 3: Rosula S. J. Reyes

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 6, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Prostate cancer is the 3rd most diagnosed cancer overall. Current screening methods such as the prostate-specific antigen test could result in overdiagonosis and overtreatment while other methods such as a transrectal ultrasonography are invasive. Recent medical advancements have allowed the use of multiparametric MRI — a noninvasive and reliable screening process for prostate cancer. However, assessment would still vary from different professionals introducing subjectivity. While con-volutional neural network has been used in multiple studies to ob-jectively segment prostate lesions, due to the sensitivity of datasets and varying ground-truth established used in these studies, it is not possible to reproduce and validate the results. In this study, we executed a repeatable framework for segmenting prostate cancer lesions using annotated apparent diffusion coefficient maps from the QIN-PROSTATE-Repeatability dataset — a publicly available dataset that includes multiparametric MRI images of 15 patients that are confirmed or suspected of prostate cancer with two studies each. We used a main architecture of U-Net with batch normalization tested with different encoders, varying data image augmentation combinations, and hyperparameters adopted from various published frameworks to validate which combination of parameters work best for this dataset. The best performing framework was able to achieve a Dice score of 0.47 (0.44-0.49) which is comparable to previously published studies. The results from this study can be objectively compared and improved with further studies whereas this was previously not possible.

Keywords: Convolutional neural networks; binary semantic segmentation; prostate cancer; computer vision; deep learning

Ian Vincent O. Mirasol, Patricia Angela R. Abu and Rosula S. J. Reyes, “Construction of a Repeatable Framework for Prostate Cancer Lesion Binary Semantic Segmentation using Convolutional Neural Networks” International Journal of Advanced Computer Science and Applications(IJACSA), 13(6), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130697

@article{Mirasol2022,
title = {Construction of a Repeatable Framework for Prostate Cancer Lesion Binary Semantic Segmentation using Convolutional Neural Networks},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130697},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130697},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {6},
author = {Ian Vincent O. Mirasol and Patricia Angela R. Abu and Rosula S. J. Reyes}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org