The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130885
PDF

A Comparative Analysis of Generative Neural Attention-based Service Chatbot

Author 1: Sinarwati Mohamad Suhaili
Author 2: Naomie Salim
Author 3: Mohamad Nazim Jambli

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 8, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Companies constantly rely on customer support to deliver pre-and post-sale services to their clients through websites, mobile devices or social media platforms such as Twitter. In assisting customers, companies employ virtual service agents (chatbots) to provide support via communication devices. The primary focus is to automate the generation of conversational chat between a computer and a human by constructing virtual service agents that can predict appropriate and automatic responses to customers’ queries. This paper aims to present and implement a seq2seq-based learning task model based on encoder-decoder architectural solutions by training generative chatbots on customer support Twitter datasets. The model is based on deep Recurrent Neural Networks (RNNs) structures which are uni-directional and bi-directional encoder types of Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). The RNNs are augmented with an attention layer to focus on important information between input and output sequences. Word level embedding such as Word2Vec, GloVe, and FastText are employed as input to the model. Incorporating the base architecture, a comparative analysis is applied where baseline models are compared with and without the use of attention as well as different types of input embedding for each experiment. Bilingual Evaluation Understudy (BLEU) was employed to evaluate the model’s performance. Results revealed that while biLSTM performs better with Glove, biGRU operates better with FastText. Thus, the finding significantly indicated that the attention-based, bi-directional RNNs (LSTM or GRU) model significantly outperformed baseline approaches in their BLEU score as a promising use in future works.

Keywords: Sequence-to-sequence; encoder-decoder; service chatbot; attention-based encoder-decoder; Recurrent Neural Net-work (RNN); Long Short-Term Memory (LSTM); Gated Recurrent Unit (GRU); word embedding

Sinarwati Mohamad Suhaili, Naomie Salim and Mohamad Nazim Jambli, “A Comparative Analysis of Generative Neural Attention-based Service Chatbot” International Journal of Advanced Computer Science and Applications(IJACSA), 13(8), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130885

@article{Suhaili2022,
title = {A Comparative Analysis of Generative Neural Attention-based Service Chatbot},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130885},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130885},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {8},
author = {Sinarwati Mohamad Suhaili and Naomie Salim and Mohamad Nazim Jambli}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org