The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2022.0130980
PDF

A Hybrid Approach of Wavelet Transform, Convolutional Neural Networks and Gated Recurrent Units for Stock Liquidity Forecasting

Author 1: Mohamed Ben Houad
Author 2: Mohammed Mestari
Author 3: Khalid Bentaleb
Author 4: Adnane El Mansouri
Author 5: Salma El Aidouni

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 13 Issue 9, 2022.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Stock liquidity forecasting is critical for investors, issuers, and financial market regulators. The object of this study is to propose a method capable of accurately predicting the liquidity of stocks. The few studies on stock liquidity forecasting have focused on single models such as Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors, the nonlinear autoregressive network with exogenous input, and Deep Learning. A new trend in forecasting which attempts to combine several approaches is emerging at the moment. Inspired by this new trend, we propose a hybrid approach of Wavelet Transform, Convolutional Neural Networks, and Gated Recurrent Units to predict stock liquidity. Our model is tested on daily data of companies listed on the Casablanca Stock Exchange from 2000 to 2021. Its forecasting performances are evaluated based on the Mean Absolute Error, the Root Mean Square Error, the Mean Absolute Percentage Error, Theil’s U statistic, and the correlation coefficient. Finally, the outperformance of the proposed model is confirmed by comparison with other reference forecasting models. This study contributes to the enrichment of the field of prediction of financial risks and can constitute a framework of analysis allowing to help the stakeholders of the financial markets to forecast the liquidity of the actions.

Keywords: Stock liquidity; wavelet transform; convolutional neural networks; GRU cell; Casablanca stock exchange

Mohamed Ben Houad, Mohammed Mestari, Khalid Bentaleb, Adnane El Mansouri and Salma El Aidouni, “A Hybrid Approach of Wavelet Transform, Convolutional Neural Networks and Gated Recurrent Units for Stock Liquidity Forecasting” International Journal of Advanced Computer Science and Applications(IJACSA), 13(9), 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130980

@article{Houad2022,
title = {A Hybrid Approach of Wavelet Transform, Convolutional Neural Networks and Gated Recurrent Units for Stock Liquidity Forecasting},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2022.0130980},
url = {http://dx.doi.org/10.14569/IJACSA.2022.0130980},
year = {2022},
publisher = {The Science and Information Organization},
volume = {13},
number = {9},
author = {Mohamed Ben Houad and Mohammed Mestari and Khalid Bentaleb and Adnane El Mansouri and Salma El Aidouni}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org