The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140396
PDF

A Real-time ECG CTG based Ensemble Feature Extraction and Unsupervised Learning based Classification Framework for Multi-class Abnormality Prediction

Author 1: Y. Aditya
Author 2: S. Suganthi Devi
Author 3: B. D. C. N Prasad

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 3, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Cardiovascular diseases (CVDs) are a leading cause of death worldwide. Early detection and diagnosis of these diseases can greatly reduce complications and improve outcomes for high-risk individuals. One method for detecting CVDs is through the use of electrocardiogram (ECG) monitoring systems, which use various technologies such as the Internet of Things (IoT), mobile applications, wireless sensor networks (WSN), and wearable devices to acquire and analyze ECG data for early diagnosis. However, despite the prevalence of these systems in the literature, there is a need for further optimization and improvement of their classification accuracy. In an effort to address this challenge, a novel heterogeneous unsupervised learning model for real-time ECG classification was proposed. The main goal of this work was to reduce the error rate and improve the classification accuracy of the system. This study presents a framework for the classification of multi-class abnormalities in electrocardiograms (ECGs) using an ensemble feature extraction technique and unsupervised learning. The framework utilizes a real-time electrocardiogram-cardiotocography (ECG-CTG) system to extract features from the ECG signal, and then employs an ensemble of feature extraction techniques to enhance the discrimination of the extracted features. The extracted features are then used in an unsupervised learning-based classification algorithm to classify the ECG signals into different classes of abnormalities. The proposed framework is evaluated on a dataset of ECG signals and the results show that it can effectively classify ECG signals with high accuracy and low computational complexity.

Keywords: Ensemble; feature ranking; improved inter quartile range; outlier detection; heterogeneous optimized k-nearest neighbor; unsupervised learning

Y. Aditya, S. Suganthi Devi and B. D. C. N Prasad, “A Real-time ECG CTG based Ensemble Feature Extraction and Unsupervised Learning based Classification Framework for Multi-class Abnormality Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 14(3), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140396

@article{Aditya2023,
title = {A Real-time ECG CTG based Ensemble Feature Extraction and Unsupervised Learning based Classification Framework for Multi-class Abnormality Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140396},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140396},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {3},
author = {Y. Aditya and S. Suganthi Devi and B. D. C. N Prasad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org