The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.01405109
PDF

Primal-Optimal-Binding LPNet: Deep Learning Architecture to Predict Optimal Binding Constraints of a Linear Programming Problem

Author 1: Natdanai Kafakthong
Author 2: Krung Sinapiromsaran

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Identifying an optimal basis for a linear programming problem is a challenging learning task. Traditionally, an optimal basis is obtained via the iterative simplex method which improves from the current basic feasible solution to the adjacent one until it reaches optimal. The obtained result is the value of the optimal solution and the corresponding optimal basis. Even though learning the optimal value is hard but learning the optimal basis is possible via deep learning. This paper presents the primal-optimal-binding LPNet that learns from massive linear programming problems of various sizes casting as all-unit-row-except-first-unit-column matrices. During the training step, these matrices are fed to the special row-column convolutional layer followed by the state-of-the-art deep learning architecture and sent to two fully connected layers. The result is the probability vector of non-negativity constraints and the original linear programming constraints at the optimal basis. The experiment shows that this LPNet achieves 99% accuracy of predicting a single binding optimal constraint on unseen test problems and Netlib problems. It identifies correctly 80% LP problems having all optimal binding constraints and faster than cplex solution time.

Keywords: Deep learning; convolution neural network; linear programming; basic feasible solution; optimization

Natdanai Kafakthong and Krung Sinapiromsaran, “Primal-Optimal-Binding LPNet: Deep Learning Architecture to Predict Optimal Binding Constraints of a Linear Programming Problem” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.01405109

@article{Kafakthong2023,
title = {Primal-Optimal-Binding LPNet: Deep Learning Architecture to Predict Optimal Binding Constraints of a Linear Programming Problem},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.01405109},
url = {http://dx.doi.org/10.14569/IJACSA.2023.01405109},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Natdanai Kafakthong and Krung Sinapiromsaran}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org