The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140525
PDF

An Adaptive Channel Selection and Graph ResNet Based Algorithm for Motor Imagery Classification

Author 1: Yongquan Xia
Author 2: Jianhua Dong
Author 3: Duan Li
Author 4: Keyun Li
Author 5: Jiaofen Nan
Author 6: Ruyun Xu

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In Brain-Computer interface (BCI) applications, achieving accurate control relies heavily on the classification accuracy and efficiency of motor imagery electroencephalogram (EEG) signals. However, factors such as mutual interference between multi-channel signals, inter-individual variability, and noise interference in the channels pose challenges to motor imagery EEG signal classification. To address these problems, this paper proposes an Adaptive Channel Selection algorithm aimed at optimizing classification accuracy and Information Translate Rate (ITR). First, C3, C4, and Cz are selected as key channels based on neurophysiological evidence and extensive experimental studies. Next, the channel selection is fine-tuned using spatial location and absolute Pearson correlation coefficients. By analyzing the relationship between EEG channels and key channels, the most relevant channel combination is determined for each subject, reducing confounding information and improving classification accuracy. To validate the method, the SHU Dataset and the PhysioNet Dataset are used in experiments. The Graph ResNet classification model is employed to extract features from the selected channel combinations using deep learning techniques. Experimental results show that the average classification accuracy is improved by 5.36% and 9.19%, and the Information Translate Rate is improved by 29.24% and 26.75%, respectively, compared to a single channel combination.

Keywords: Brain-Computer Interface; motor imagery; channel selection; deep learning; graph convolutional neural network

Yongquan Xia, Jianhua Dong, Duan Li, Keyun Li, Jiaofen Nan and Ruyun Xu, “An Adaptive Channel Selection and Graph ResNet Based Algorithm for Motor Imagery Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140525

@article{Xia2023,
title = {An Adaptive Channel Selection and Graph ResNet Based Algorithm for Motor Imagery Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140525},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140525},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Yongquan Xia and Jianhua Dong and Duan Li and Keyun Li and Jiaofen Nan and Ruyun Xu}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org