The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140530
PDF

Feature Selection using Particle Swarm Optimization for Sentiment Analysis of Drug Reviews

Author 1: Afifah Mohd Asri
Author 2: Siti Rohaidah Ahmad
Author 3: Nurhafizah Moziyana Mohd Yusop

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Feature selection (FS) is an essential classification pre-processing task that eliminates irrelevant, redundant, and noisy features. The primary benefits of performing this task include enhanced model performance, reduced computational expense, and modified “curse of dimensionality”. The goal of performing FS is to find the best feature group that can be used to build an effective pattern recognition model. Drug reviews play a significant role in delivering valuable medical care information, such as the efficacy, side effects, and symptoms of drug use, facilities, drug pricing, and personal drug usage experience to healthcare providers and patients. FS can be used to obtain relevant and valuable information that can produce an optimal subset of features to help obtain accurate results in the classification of drug reviews. The FS approach reduces the number of input variables by eliminating redundant or irrelevant features and narrowing the collection of features to those most significant to the machine learning model. However, the high dimensionality of the feature vector is a major issue that reduces the accuracy of sentiment classification, making it challenging to find the best feature subset. Thus, this article presents a perceptive method to perform FS by gathering information from the potential solutions generated by a particle swarm optimization (PSO) algorithm. This research aimed to apply this algorithm to identify the optimal feature subset of drug reviews to improve the classification accuracy of sentiment analysis. The experimental results showed that PSO provided a better classification performance than a genetic algorithm (GA) and ant colony optimization (ACO) in most datasets. The results showed that PSO demonstrated the highest levels of performance, with an average of 49.3% for precision, 73.6% for recall, 59% for F-score, and 57.2% for accuracy.

Keywords: Sentiment analysis; feature selection; particle swarm optimization; drug reviews

Afifah Mohd Asri, Siti Rohaidah Ahmad and Nurhafizah Moziyana Mohd Yusop, “Feature Selection using Particle Swarm Optimization for Sentiment Analysis of Drug Reviews” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140530

@article{Asri2023,
title = {Feature Selection using Particle Swarm Optimization for Sentiment Analysis of Drug Reviews},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140530},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140530},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Afifah Mohd Asri and Siti Rohaidah Ahmad and Nurhafizah Moziyana Mohd Yusop}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org