The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140599
PDF

Experimentation on Iterated Local Search Hyper-heuristics for Combinatorial Optimization Problems

Author 1: Stephen A. Adubi
Author 2: Olufunke O. Oladipupo
Author 3: Oludayo O. Olugbara

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 5, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Designing effective algorithms to solve cross-domain combinatorial optimization problems is an important goal for which manifold search methods have been extensively investigated. However, finding an optimal combination of perturbation operations for solving cross-domain optimization problems is hard because of the different characteristics of each problem and the discrepancies in the strengths of perturbation operations. The algorithm that works effectively for one problem domain may completely falter in the instances of other optimization problems. The objectives of this study are to describe three categories of a hyper-heuristic that combine low-level heuristics with an acceptance mechanism for solving cross-domain optimization problems, compare the three hyper-heuristic categories against the existing benchmark algorithms and experimentally determine the effects of low-level heuristic categorization on the standard optimization problems from the hyper-heuristic flexible framework. The hyper-heuristic categories are based on the methods of Thompson sampling and iterated local search to control the perturbation behavior of the iterated local search. The performances of the perturbation configurations in a hyper-heuristic were experimentally tested against the existing benchmark algorithms on standard optimization problems from the hyper-heuristic flexible framework. Study findings have suggested the most effective hyper-heuristic with improved performance when compared to the existing hyper-heuristics investigated for solving cross-domain optimization problems to be the one with a good balance between “single shaking” and “double shaking” strategies. The findings not only provide a foundation for establishing comparisons with other hyper-heuristics but also demonstrate a flexible alternative to investigate effective hyper-heuristics for solving complex combinatorial optimization problems.

Keywords: Combinatorial optimization; heuristic algorithm; heuristic categorization; local search; Thompson sampling

Stephen A. Adubi, Olufunke O. Oladipupo and Oludayo O. Olugbara, “Experimentation on Iterated Local Search Hyper-heuristics for Combinatorial Optimization Problems” International Journal of Advanced Computer Science and Applications(IJACSA), 14(5), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140599

@article{Adubi2023,
title = {Experimentation on Iterated Local Search Hyper-heuristics for Combinatorial Optimization Problems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140599},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140599},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {5},
author = {Stephen A. Adubi and Olufunke O. Oladipupo and Oludayo O. Olugbara}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org