The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2023.0140972
PDF

A Novel Feature Fusion for the Classification of Histopathological Carcinoma Images

Author 1: Salini S Nair
Author 2: M. Subaji

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 14 Issue 9, 2023.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Breast cancer is a significant global health concern, demanding advanced diagnostic approaches. Although traditional imaging and manual examinations are common, the potential of artificial intelligence (AI) and machine learning (ML) in breast cancer detection remains underexplored. This study proposes a hybrid approach combining image processing and ML methods to address breast cancer diagnosis challenges. The method utilizes feature fusion with gray-level co-occurrence matrix (GLCM), local binary patterns (LBP), and histogram features, alongside an ensemble learning technique for improved classification. Results demonstrate the approach's effectiveness in accurately classifying three carcinoma classes (ductal, lobular, and papillary). The Voting Classifier, an ensemble learning model, achieves the highest accuracy, precision, recall, and F1-scores across carcinoma classes. By harnessing feature extraction and ensemble learning, the proposed approach offers advantages such as early detection, improved accuracy, personalized medicine recommendations, and efficient analysis. Integration of AI and ML in breast cancer diagnosis shows promise for enhancing accuracy, effectiveness, and personalized patient care, supporting informed decision-making by healthcare professionals. Future research and technological advancements can refine AI-ML algorithms, contributing to earlier detection, better treatment outcomes, and higher survival rates for breast cancer patients. Validation and scalability studies are needed to confirm the effectiveness of the proposed hybrid approach. In conclusion, leveraging AI and ML techniques has the potential to revolutionize breast cancer diagnosis, leading to more accurate and personalized detection and treatment. Technology-driven advances can significantly impact breast cancer care and management.

Keywords: Breast cancer; machine learning; artificial intelligence; feature extraction; ensemble classifier

Salini S Nair and M. Subaji, “A Novel Feature Fusion for the Classification of Histopathological Carcinoma Images” International Journal of Advanced Computer Science and Applications(IJACSA), 14(9), 2023. http://dx.doi.org/10.14569/IJACSA.2023.0140972

@article{Nair2023,
title = {A Novel Feature Fusion for the Classification of Histopathological Carcinoma Images},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2023.0140972},
url = {http://dx.doi.org/10.14569/IJACSA.2023.0140972},
year = {2023},
publisher = {The Science and Information Organization},
volume = {14},
number = {9},
author = {Salini S Nair and M. Subaji}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org