The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.01511112
PDF

Leveraging Semi-Supervised Generative Adversarial Networks to Address Data Scarcity Using Decision Boundary Analysis

Author 1: Mohamed Ouriha
Author 2: Omar El Mansouri
Author 3: Younes Wadiai
Author 4: Boujamaa Nassiri
Author 5: Youssef El Mourabit
Author 6: Youssef El Habouz

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 11, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Convolutional Neural Networks (CNNs) are widely regarded as one of the most effective solutions for image classification. However, developing high-performing systems with these models typically requires a substantial number of labeled images, which can be difficult to acquire. In image classification tasks, insufficient data often leads to overfitting, a critical issue for deep learning models like CNNs. In this study, we introduce a novel approach to addressing data scarcity by leveraging semi-supervised classification models based on Generative Adversarial Networks (SGAN). Our approach demonstrates significant improvements in both efficiency and performance, as shown by variations in the evolution of decision boundaries and overall accuracy. The analysis of decision boundaries is crucial, as it provides insights into the model’s ability to generalize and effectively classify new data points. Using the MNIST dataset, we show that our approach (SGAN) outperform CNN methods, even with fewer labeled images. Specifically, we observe that the distance between the images and the decision boundary in our approach is larger than in CNN-based methods, which contributes to greater model stability. Our approach achieves an accuracy of 84%, while the CNN model struggles to exceed 72%.

Keywords: Decision boundary; convolutional neural network; Generative Adversarial Networks; MNIST; classification; semi-supervised classification

Mohamed Ouriha, Omar El Mansouri, Younes Wadiai, Boujamaa Nassiri, Youssef El Mourabit and Youssef El Habouz, “Leveraging Semi-Supervised Generative Adversarial Networks to Address Data Scarcity Using Decision Boundary Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 15(11), 2024. http://dx.doi.org/10.14569/IJACSA.2024.01511112

@article{Ouriha2024,
title = {Leveraging Semi-Supervised Generative Adversarial Networks to Address Data Scarcity Using Decision Boundary Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.01511112},
url = {http://dx.doi.org/10.14569/IJACSA.2024.01511112},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {11},
author = {Mohamed Ouriha and Omar El Mansouri and Younes Wadiai and Boujamaa Nassiri and Youssef El Mourabit and Youssef El Habouz}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org