The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0151195
PDF

CIPHomeCare: A Machine Learning-Based System for Monitoring and Alerting Caregivers of Cognitive Insensitivity to Pain (CIP) Patients

Author 1: Rahaf Alsulami
Author 2: Hind Bitar
Author 3: Abeer Hakeem
Author 4: Reem Alyoubi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 11, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Congenital Insensitivity to Pain (CIP) patients, particularly infants, are vulnerable to self-injury due to their inability to perceive pain, which can lead to severe harm, such as biting their hands. This research introduces "CIPHomeCare," a wearable monitoring solution designed to prevent self-injurious behaviors in CIP patients aged 6 to 24 months. The primary focus of this study is developing and applying machine learning algorithms to classify hand-biting behaviors. Using accelerometer data from the STEVAL-BCN002V1 sensor, which is a motion sensor, several machine learning models—K-Nearest Neighbors (KNN), Random Forest (RF), Naive Bayes (NB), Linear Discriminant Analysis (LDA), and Logistic Regression (LR)—were trained to differentiate between normal and harmful behaviors. To address data imbalance due to the infrequency of biting events, oversampling techniques such as SMOTE, Borderline-SMOTE, ADASYN, K-means-SMOTE, and SMOTE-ENN were employed to enhance classification performance. Among the algorithms, KNN achieved the highest accuracy (98%) and a sensitivity of 72%, highlighting its effectiveness in detecting harmful hand motions. The findings suggest that machine learning, in combination with wearable technology, can provide accurate, personalized monitoring and timely intervention for CIP patients, paving the way for broader clinical applications and real-time prevention of self-injury. The real-time processing capability of the system enables immediate alerting of caregivers, allowing for timely intervention to prevent injuries, thus improving their quality of life.

Keywords: Cognitive insensitivity to pain patients; CIP; machine learning; motion sensors; quality of life; wearable activity recognition

Rahaf Alsulami, Hind Bitar, Abeer Hakeem and Reem Alyoubi, “CIPHomeCare: A Machine Learning-Based System for Monitoring and Alerting Caregivers of Cognitive Insensitivity to Pain (CIP) Patients” International Journal of Advanced Computer Science and Applications(IJACSA), 15(11), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0151195

@article{Alsulami2024,
title = {CIPHomeCare: A Machine Learning-Based System for Monitoring and Alerting Caregivers of Cognitive Insensitivity to Pain (CIP) Patients},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0151195},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0151195},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {11},
author = {Rahaf Alsulami and Hind Bitar and Abeer Hakeem and Reem Alyoubi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org