The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0151211
PDF

Comprehensive Evaluation of Machine Learning Techniques for Obstructive Sleep Apnea Detection

Author 1: Alaa Sheta
Author 2: Walaa H. Elashmawi
Author 3: Adel Djellal
Author 4: Malik Braik
Author 5: Salim Surani
Author 6: Sultan Aljahdali
Author 7: Shyam Subramanian
Author 8: Parth S. Patel

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 12, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Obstructive Sleep Apnea (OSA) is a prevalent health issue affecting 10-25% of adults in the United States (US) and is associated with significant economic consequences. Machine learning methods have shown promise in improving the efficiency and accessibility of OSA diagnoses, thus reducing the need for expensive and challenging tests. A comparative analysis of Logistic Regression (LR), Support Vector Machine (SVM), Gradient Boosting (GB), Gaussian Naive Bayes (GNB), Random Forest (RF), and K-Nearest Neighbors (KNN) algorithms was conducted to predict Obstructive Sleep Apnea (OSA). To improve the predictive accuracy of these models, Random Oversampling was applied to address the imbalance in the dataset, ensuring a more equitable representation of the minority class. Patient demographics, including age, sex, height, weight, BMI, neck circumference, and gender, were employed as predictive features in the models. The RFC provided outstanding training and testing accuracies of 87% and 65%, respectively, and a Receiver Operating Characteristic (ROC) score of 87%. The GBC and SVM classifiers also demonstrated good performance on the test dataset. The results of this study show that machine learning techniques may be effectively used to diagnose OSA, with the Random Forest Classifier demonstrating the best results.

Keywords: Machine learning; obstructive sleep apnea; random forest classifier; oversampling; classification

Alaa Sheta, Walaa H. Elashmawi, Adel Djellal, Malik Braik, Salim Surani, Sultan Aljahdali, Shyam Subramanian and Parth S. Patel, “Comprehensive Evaluation of Machine Learning Techniques for Obstructive Sleep Apnea Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 15(12), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0151211

@article{Sheta2024,
title = {Comprehensive Evaluation of Machine Learning Techniques for Obstructive Sleep Apnea Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0151211},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0151211},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {12},
author = {Alaa Sheta and Walaa H. Elashmawi and Adel Djellal and Malik Braik and Salim Surani and Sultan Aljahdali and Shyam Subramanian and Parth S. Patel}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org