The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0151260
PDF

Radar Spectrum Analysis and Machine Learning-Based Classification for Identity-Based Unmanned Aerial Vehicles Detection and Authentication

Author 1: Aminu Abdulkadir Mahmoud
Author 2: Sofia Najwa Ramli
Author 3: Mohd Aifaa Mohd Ariff
Author 4: Muktar Danlami

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 12, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The significant use of Unmanned Aerial Vehicles (UAVs) in commercial and civilian applications presents various cybersecurity challenges, particularly in detection and authentication. Unauthorized UAVs can be very harmful to the people on the ground, the infrastructure, the right to privacy, and other UAVs. Moreover, using the internet for UAV communication may expose authorized ones to attacks, causing a loss of confidentiality, integrity, and information availability. This paper introduces radar-based UAV detection and authentication using Micro-Doppler (MD) signal analysis. The study provides a unique dataset comprising radar signals from three distinct UAV models captured under varying operational conditions. The dataset enables the analysis of specific features and classification through machine learning models, including k-nearest Neighbor (k-NN), Random Forest, and Support Vector Machine (SVM). The approach leverages radar signal processing to extract MD signatures for accurate UAV identification, enhancing detection and authentication processes. The result indicates that Random Forest achieved the highest accuracy of 100%, with high classification accuracy and zero false alarms, demonstrating its suitability for real-time monitoring. This also highlights the potential of radar-based MD analysis for UAV detection, and it establishes a foundational approach for developing robust UAV monitoring systems, with potential applications in aviation military surveillance, public safety, and regulatory compliance. Future work will focus on expanding the dataset and integrating Remote Identification (RID) policy. A policy that mandates UAVs to disclose their identity upon approaching any territory, this will help to enhance security and scalability of the system.

Keywords: Authentication; detection; cybersecurity; Micro-Doppler; radar; Unmanned Aerial Vehicle (UAV)

Aminu Abdulkadir Mahmoud, Sofia Najwa Ramli, Mohd Aifaa Mohd Ariff and Muktar Danlami, “Radar Spectrum Analysis and Machine Learning-Based Classification for Identity-Based Unmanned Aerial Vehicles Detection and Authentication” International Journal of Advanced Computer Science and Applications(IJACSA), 15(12), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0151260

@article{Mahmoud2024,
title = {Radar Spectrum Analysis and Machine Learning-Based Classification for Identity-Based Unmanned Aerial Vehicles Detection and Authentication},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0151260},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0151260},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {12},
author = {Aminu Abdulkadir Mahmoud and Sofia Najwa Ramli and Mohd Aifaa Mohd Ariff and Muktar Danlami}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org