The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2024.0150319
PDF

Prediction of Cardiovascular Disease using Machine Learning Algorithms

Author 1: Mahesh Kumar Joshi
Author 2: Deepak Dembla
Author 3: Suman Bhatia

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 15 Issue 3, 2024.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Heart is the most critical organ of our body for being responsible for regulating and maintaining the blood circulation levels. Globally, heart disease cases are prevalent and constitute a significant cause of mortality. Manifestations such as chest discomfort and irregular heartbeat are notable symptoms. The healthcare sector has amassed substantial knowledge in this domain. Analyzing the research, this paper delves into the concept of utilizing ML algorithms to predict cardiac diseases. In this research will employ a diverse array of machine learning techniques, including decision tree, support vector classifier, random forest, K-NN, logistic regression and naive Bayes. These algorithms utilize specific characteristics to forecast cardiac diseases effectively. Leveraging machine learning algorithms to analyze and predict outcomes from the extensive healthcare-generated data shows considerable promise. Recent advancements in machine learning models have incorporated numerous features, and in this study, propose the integration of these features in machine learning algorithms to forecast cardiovascular ailments. The main objective of this research is to identify the performance of the mentioned machine learning algorithms for predicting cardiovascular elements.

Keywords: Cardiovascular disease; heart; logistic regression; K-NN; machine learning; naïve bayes; SVM

Mahesh Kumar Joshi, Deepak Dembla and Suman Bhatia, “Prediction of Cardiovascular Disease using Machine Learning Algorithms” International Journal of Advanced Computer Science and Applications(IJACSA), 15(3), 2024. http://dx.doi.org/10.14569/IJACSA.2024.0150319

@article{Joshi2024,
title = {Prediction of Cardiovascular Disease using Machine Learning Algorithms},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2024.0150319},
url = {http://dx.doi.org/10.14569/IJACSA.2024.0150319},
year = {2024},
publisher = {The Science and Information Organization},
volume = {15},
number = {3},
author = {Mahesh Kumar Joshi and Deepak Dembla and Suman Bhatia}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org